B-spline network-based iterative learning control for trajectory tracking of a piezoelectric actuator

نویسندگان

  • Fu-Shin Lee
  • Jhen-Cheng Wang
  • Chiang-Ju Chien
چکیده

This paper presents the trajectory tracking approach of a piezoelectric actuator using an iterative learning control (ILC) scheme based on B-spline network (BSN) filtering. The ILC scheme adopts a state-compensated iterative learning formula, which compensates for the state difference between two consecutive iterations in order that the iterative learning can learn from the tracking errors of the previous iteration effectively. The BSN is used to attenuate the noises and retrieve the signals of the tracking errors for the ILC. The BSN serves as a unique filter which generally does not have zero-phase responses. Design details on the ILC scheme using BSN filtering are discussed in the paper. Extensive experiments of tracking two desired trajectories for a piezoelectric actuator are presented. The experimental results show that the state-compensated ILC scheme using BSN filtering can achieve fast error convergence and keep small steady-state tracking errors close to the system noise level. This research thus relaxes the restriction of the zero-phase criterion commonly applied to the ILC filtering in the literature. & 2008 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

Piezoelectric Actuated In-pipe Microrobot with P-type Iterative Learning Active Force Control

In this paper, a piezoelectric microrobot is modelled and simulated based on active force control (AFC) with a proportional (P) – type iterative learning algorithm (ILA) operating in a constrained environment for an in-pipe application. A mathematical model that represents the dynamic characteristics of microrobot has been developed considering the robot system subjected to different input exci...

متن کامل

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications

This paper presents the control system design for a piezoelectric actuator (PEA) for a high-speed trajectory scanning application. First nonlinear hysteresis is compensated for by using the Maxwell resistive capacitor model. Then the linear dynamics of the hysteresis-compensated piezoelectric actuator are identified. A proportional plus integral (PI) controller is designed based on the linear s...

متن کامل

Saturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study

In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015